Multiple Local Community Detection
نویسندگان
چکیده
منابع مشابه
Overlapping Community Detection by Local Community Expansion
Community structure is the key aspect of complex network analysis and it has important practical significance. While in real networks, some nodes may belong to multiple communities, so overlapping community detection attracts more and more attention. But most of the existing overlapping community detection algorithms increase the time complexity in some extent. In order to detect overlapping co...
متن کاملFast community detection using local neighbourhood search
Communities play a crucial role to describe and analyse modern networks. However, the size of those networks has grown tremendously with the increase of computational power and data storage. While various methods have been developed to extract community structures, their computational cost or the difficulty to parallelize existing algorithms make partitioning real networks into communities a ch...
متن کاملLocal Spectral Diffusion for Robust Community Detection
We address a semi-supervised learning problem of identifying all latent members of a local community from very few labeled seed members in large networks. By a simple and efficient sampling method, we conduct a comparatively small subgraph encompassing most of the latent members such that the follow-up membership identification could focus on an accurate local region instead of the whole networ...
متن کاملLocal Community Detection Based on Small Cliques
Community detection aims to find dense subgraphs in a network. We consider the problem of finding a community locally around a seed node both in unweighted and weighted networks. This is a faster alternative to algorithms that detect communities that cover the whole network when actually only a single community is required. Further, many overlapping community detection algorithms use local comm...
متن کاملOverlapping Community Detection via Local Spectral Clustering
Large graphs arise in a number of contexts and understanding their structure and extracting information from them is an important research area. Early algorithms on mining communities have focused on the global structure, and often run in time functional to the size of the entire graph. Nowadays, as we often explore networks with billions of vertices and find communities of size hundreds, it is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM SIGMETRICS Performance Evaluation Review
سال: 2018
ISSN: 0163-5999
DOI: 10.1145/3199524.3199537